The Generalized Euler Equation and the Bankruptcy-Sovereign Default Problem

Adrien Wicht⁴

Xavier Mateos-Planas¹ Sean McCrary² Jose-Victor Rios-Rull^{2,3}

¹Queen Mary University

²University of Pennsylvania

³University College, London, NBER, CEPR, and CAERP

⁴European University Institute

Preliminary and Incomplete

- Models of debt with default household, firm and sovereign debt are workhorses in the quantitative literature.
- These models are often solved numerically without characterizing the equilibrium, its existence and uniqueness.
- Precise characterization of trade-offs the borrower faces necessary to provide clear intuition and computation of these models.

What We Do

- **1** We revisit the case with short-term debt and no commitment.
- **2** Characterization through a Generalized Euler Equation (GEE):
 - Euler Equation with derivatives of future actions.
 - No expression for price derivatives is needed.
- **3** We then characterize the equilibrium with long-term debt:
 - Markov optimality conditions, existence and uniqueness.
 - Differentiability of price and policy functions.

What We Find

For long-term debt:

- The GEE enables a complete characterization of interior solutions.
- Equilibrium features two main regions:
 - Both dilution and default risks.
 - Only dilution risk.
- Equilibrium features two types of behavior:
 - Borrower chooses to never exceeds the risky debt limit.
 - Borrower enters the risky borrowing region with positive probability.
- Limit of finite horizon equilibrium exists and is unique.

Literature

- Incomplete markets models with default:
 - Auclert and Rognlie (2016), Aguiar et al. (2019), Clausen and Strub (2020), Chatterjee and Eyigungor (2012) and Aguiar and Amador (2020).
 - \Rightarrow Long-term debt + GEE + Markov equilibrium.
- Generalized Euler equation:
 - Krusell et al. (2002, 2010), Krusell and Smith (2003), Klein et al. (2008), Arellano and Ramanarayanan (2012), Niepelt (2014) and Arellano et al. (2019).
 - \Rightarrow Differentiability of price and policy functions.
- Quantitative solution methods:
 - Hatchondo et al. (2010) and Arellano et al. (2016).
 - \Rightarrow Algorithm based on GEE and auxiliary functions.

Outline

1 Environment

2 Short-Term debt

3 Long-Term Debt

4 Conclusion

Environment

- Risk averse borrower: standard u(c) and $\beta < \frac{1}{1+r} \equiv \bar{p}$.
- Endowment $y \in [y, \overline{y}]$ is *iid* with continuous cdf F and density f.
- Borrowing of non-contingent debt in competitive lending market.
- Borrowing b > 0, debt pays coupon 1, fraction λ of the debt matures.
- Timing: (1) y realizes, (2) repay or not, (3) new bond issue or autarky.
- Upon default, borrower suffers permanent financial autarky:

$$V^{A}(y) = u(y) + \frac{\beta}{1-\beta} E[u(c)] = u(y) + \beta \overline{v}.$$

1 Environment

2 Short-Term debt

3 Long-Term Debt

4 Conclusion

Short-Term Debt

Discrete choice:

$$V(y,b) = \max\left\{\underbrace{V^{R}(y,b)}_{P}, \underbrace{V^{A}(y)}_{P}\right\}.$$

Value of repayment:

$$V^{R}(y,b) = \max_{b'} \left\{ u(y-b+q(b')b') + \beta \int_{\underline{y}}^{\overline{y}} V(y',b')dF \right\}$$

= $\max_{b'} \left\{ u(y-b+q(b')b') + \beta \underbrace{\int_{d(b')}^{\overline{y}}}_{d(b')} \left\{ V^{R}(y',b') - V^{A}(y') \right\} dF + \beta \overline{v} \right\}.$

Default threshold:

$$d(b) = \min\left\{\{y: V^{R}(y, b) \geq V^{A}(y)\} \cup \{\bar{y}\}\right\}.$$

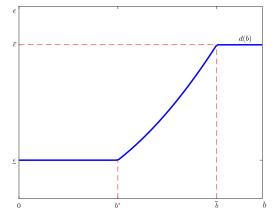
■ Risk-free borrowing threshold: $b^* \ge 0$ such that $V^R(\underline{y}, b^*) = V^A(\underline{y})$.

Short-Term Debt: GEE

$$u_{c}(c)\underbrace{[q(b') + q_{b}(b')b']}_{\text{marginal revenue}} = \beta \int_{d(b')}^{\overline{y}} u_{c}(c')dF$$

■ Is this price differentiable? Almost, but not quite.

Default Threshold



• For debt $b > b^*$ there is default risk.

- d(b) not differentiable at b^* . $\partial^+ d(b) > 0$, but $\partial^- d(b) = 0$.
- No analytical solution for b^* , but we know it solves $V^R(\underline{y}, b^*) = V^A(\underline{y})$.

Short-Term Debt: Bond Price

Bond price:

$$q(b') = egin{cases} ar{p}[1 - F(d(b'))], & b^* < b' \ ar{p}, & b' \leq b^* \end{cases}$$

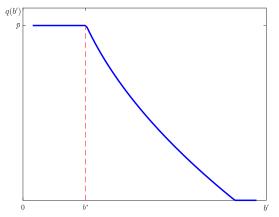
Derivative is defined for $b' \neq b^*$ (inherited property of d(b)):

$$q_b(b') = -\bar{p}f(d(b'))d_b(b').$$

■ Marginal revenue of borrowing at *b*':

$$q(b') + q_b(b')b' = ar{
ho}[1 - F(d(b))] - ar{
ho}f(d(b'))d_b(b')b'.$$

Short-Term Debt: Bond Price



• The kink in the price at the risk-free borrowing limit b^* makes b^* more attractive.

• Agents will choose to stay at b^* to avoid lowering the price of their debt.

From Clausen and Strub (2020) we know either:

1 $b' = b^*$

2 $b' > b^*$ and solves the GEE:

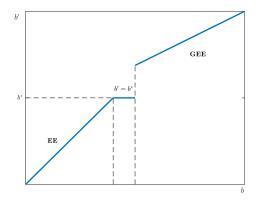
$$u_{c}(c)[(1-F(d(b')))-f(d(b'))d_{b}(b')b'] = \beta R \int_{d(b')}^{\bar{y}} u_{c}(c')dF.$$

3 $b' < b^*$ and solves EE:

$$u_c(c) = \beta R \int u_c(c') dF$$

No need to consider the price explicitly.

Short-Term Debt: Borrowing Policy



• Agents stay at the risk-free limit b^* to avoid lowering price of debt

Outline

1 Environment

- 2 Short-Term debt
- 3 Long-Term Debt

4 Conclusion

Consumption with long maturity bonds:

$$c=y-b+q(b')[b'-(1-\lambda)b].$$

- Sovereign's choice of borrowing determines the value of outstanding debt b[q(b')(1 − λ)b − 1]
- Since debts can be diluted by sovereign, price today depends on future actions. Sovereign cannot commit not to borrow more in the future.
- This is a harder problem to characterize without the price.

Long-Term Debt: Borrower's Problem

The value of repayment:

$$V^{R}(y,b) = \max_{b'} \left\{ u \big(y - b + q(b') \left[b' - (1-\lambda)b \right] \big) + \beta \int_{\underline{y}}^{\overline{y}} V(y',b') dF \right\}.$$

- Bond policy function: b' = h(y, b).
- What would a GEE look like (when it holds)?

$$u_{c}(c)[q(b') + q_{b}(b')[b' - (1 - \lambda)b]] = \beta \int_{d(b')}^{\bar{y}} u_{c}(c')[1 + (1 - \lambda)q(b'')]dF.$$

Depends on price derivative $q_b(b')$ as in the case of short-term debt.

Long-Term Debt: Bond Price

Bond price:

$$\begin{aligned} q(b') &= \bar{p} \int_{\underline{y}}^{\bar{y}} \mathbb{I}_{\{V^{R}(y',b') \ge V^{A}(y')\}} \big[1 + (1-\lambda)q(h(y',b')) \big] dF \\ &= \bar{p} \big[1 - F(d(b')) \big] + \bar{p}(1-\lambda) \int_{d(b')}^{\bar{y}} q(h(y',b')) dF \end{aligned}$$

- Price depends on both default d(b') and future borrowing h(b', y').
- Changes in price due to d(b') reflect default risk, those due to h(y', b') reflect dilution risk.

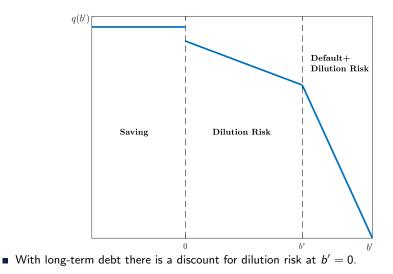
Long-Term Debt: Bond Price

Bond Price

$$q(b') = \begin{cases} \bar{p}[1 - F(d(b'))] + \bar{p}(1 - \lambda) \int_{d(b')}^{\bar{y}} q(h(y', b')) dF, & b^* < b' \\\\ \bar{p} + \bar{p}(1 - \lambda) \int_{\underline{y}}^{\bar{y}} q(h(y', b')) dF, & 0 < b' \le b^* \\\\\\ \frac{1}{r + \lambda}, & b' \le 0 \end{cases}$$

- With short-term debt $(\lambda = 1)$, $q(b') = \bar{p}$ when $b' < b^*$.
- With $\lambda < 1$, debt is honored next period with certainty, but dilution risk.
- Why? If there is probability of b' > b* at some point (after a sequence of bad shocks), the price today reflects this risk.

Long-Term Debt: Bond Price



Derivative for $b' \notin \{0, b^*\}$

$$q_{b}(b') = \bar{p}(1-\lambda)\underbrace{\int_{d(b')}^{\bar{y}} q_{b}(h(\cdot))h_{b}(\cdot)dF}_{\text{Dilution, }b'>0} - \bar{p}\underbrace{\overbrace{\left[1+(1-\lambda)q(h(d(b'),b'))\right]}^{\text{Default, }b'>b^{*}}}_{\text{Value of loss}}\underbrace{\frac{\text{Default, }b'>b^{*}}{\left[1+(1-\lambda)q(h(d(b'),b'))\right]}}_{\text{f}(d(b'))d_{b}(b')}$$

Leads to three cases for our GEE:

1 Borrowing $b' > b^*$ has both default and dilution terms

2 Borrowing $0 < b' < b^*$ has dilution risk only

Is this dilution term well-defined?

$$\int_{d(b')}^{\bar{y}} q_b(h(\cdot)) h_b(\cdot) dF$$

- Yes, there are three types of points $y \in [d(b'), \overline{y}]$.
 - **1** Points s.t. $b' \notin \{0, b^*\}$, and h_b , $q_b(h)$ are defined.
 - 2 Points s.t. $b' \in \{0, b^*\}$, and $h_b = 0$, $\Rightarrow q_b(h)h_b = 0$.
 - **3** The remaining points where $b' \in \{0, b^*\}$, and h_b , hence the integrand $q_b(h)h_b$, is not well-defined but has measure zero.

Long-Term Debt: Eliminating $q_b(b')$

• Use value of q_b implied by GEE, call it B(h, d, q):

$$q_b = B(h, d', q) = rac{\int_{d'} u_c [1 + (1 - \lambda)q'] dF - u_c(c)q}{u_c [h - (1 - \lambda)b]}$$

• Substitute this into the expression for the bond price derivative:

$$q_b = ar{p}(1-\lambda)\int_{d(b')}^{ar{y}} B(h',d'',q')h_b dF - ar{p}\left[1+(1-\lambda) ilde{q}
ight]f(d)d_b$$

Substitute back into GEE:

$$u_{c}(c) \left[q(b') + \overline{\left\{ \bar{p}(1-\lambda) \int_{d(b')}^{\bar{y}} B(h',d'',q') h_{b} dF - \bar{p} \left[1 + (1-\lambda)\tilde{q} \right] f(d) d_{b} \right\}} \left[b' - (1-\lambda)b \right] \right]$$
$$= \beta \int_{d(b')}^{\bar{y}} u_{c}(c') \left[1 + (1-\lambda)q(b'') \right] dF$$

Long-Term Debt: GEE Effects

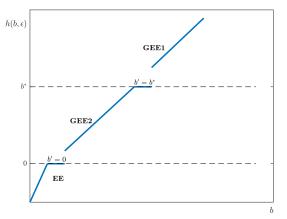
$$u_{c}(c) \begin{bmatrix} consumption gain from marginal borrowing \\ q(b') + \\ \underbrace{\left\{ \bar{p}(1-\lambda) \int_{d(b')}^{\bar{y}} B(h',d'',q')h_{b}dF \right\}}_{\text{dilution, }b'>0} [b'-(1-\lambda)b] \\ -\underbrace{\left\{ \bar{p}\left[1+(1-\lambda)\tilde{q}\right]f(d)d_{b} \right\}}_{\text{default, }b'>b^{*}} \\ = \beta \int_{d(b')}^{\bar{y}} u_{c}(c') [1+(1-\lambda)q(b'')] dF \end{bmatrix}$$

Two borrowing regions that reflect different risks to creditors:

1 $b' > b^*$, the GEE reflects both default and dilution risk (GEE1)

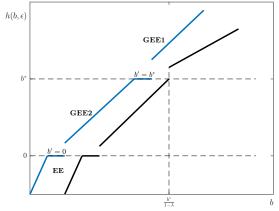
2
$$0 < b' < b^*$$
, the GEE reflects only dilution risk (GEE2)

Borrowing Policy: When Dilution is Positive



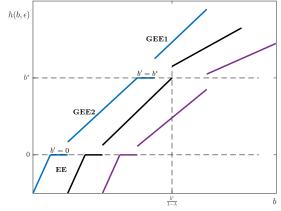
- Agents wait to borrow, due to dilution lowering the price of borrowing.
- As with short-term debt, agents stay at risky borrowing limit b^* .
- There is a discontinuity at b*, due to the kink in the pricing.

Borrowing Policy: When Dilution is Zero



- Agents do not stay at b^* when no net borrowing.
- Discontinuities are smaller: less is borrowed because the price is higher.

Borrowing Policy: When Dilution is Negative



• There is a jump direct to higher debt without going through b^* .

• As with short-term debt, agents stay at b^* if dilution effect is large enough.

Operator K(q) on price:

$$(\mathcal{K}q)(b') = \bar{p}\left[1 - F(d(b';q))\right] + \bar{p}(1-\lambda)\int_{d(b';q)}^{y} q(h(y',b';q))dF.$$

- Note that $d(\cdot; q)$ and $h(\cdot; q)$ being implicit functions of q.
- Chatterjee and Eyigungor (2012) show existence of a fixed point q* that is decreasing in b'.
- Aguiar and Amador (2020) show potential multiplicity in q^* .

Long-Term Debt: Existence and Uniqueness

- We impose a restriction on q(b') that it be the limit of a finite horizon model as T → ∞.
- Specifically, we consider the price in the first period of a finite horizon model q₁(b'; T) as T becomes large.
- We use backwards induction starting at $q_T(b'; T) = 0$ to get $q_{T-1}(b'; T)$, ..., until $q_1(b'; T)$.
- We show the limit exists and is unique.
- Aguiar and Amador (2020) may not restrict to Markov equilibria.

Long-Term Debt: Differentiability

- Prices and debt functions exhibit jumps in various places.
- Those jumps usually prevent differentiability.
- We add extreme value shocks and consider only $b \ge 0$.
- Price and policy function are differentiable almost everywhere.
- For arbitrarily small scale parameter, derivation of the GEE is possible.

We can describe equilibrium as set of functional equations in h and d1 Auxiliary Functions

$$\begin{aligned} q(h(y,b)) &= \bar{p} \left\{ [1 - F(d)] + (1 - \lambda) \int_{d} q(h(h)) dF \right\} \\ B(y,b;h,d,q) &= \frac{\int_{d'} u_c [1 + (1 - \lambda)q'] dF - u_c q}{u_c [h - (1 - \lambda)b]} \\ V^R(y,b) &= u(y - bq[h - (1 - \lambda)b) + \int_{d} V^R - V^A dF + \beta \bar{v} \end{aligned}$$

2 Equilibrium functional equations

$$u_{c}(c) \left[q(b') + \left\{ \bar{p}(1-\lambda) \int_{d(b')}^{\bar{y}} B(h',d'',q')h_{b}dF - \bar{p}\left[1 + (1-\lambda)\tilde{q}\right]f(d)d_{b} \right\} [b' - (1-\lambda)b] \right]$$

= $\beta \int_{d(b')}^{\bar{y}} u_{c}(c') \left[1 + (1-\lambda)q(b'')\right]dF$
 $V^{R}(d,y) = V^{A}(d), \qquad V^{R}(\underline{y},b^{*}) = V^{A}(\underline{y})$

Computation

- The most common way to solve these models is value function iteration on a discrete grid. Very slow. Need to iterate between V(y, b; q) and q.
- Arellano et al. (2016) use Euler equation to solve short-term debt problem numerically, but assume the GEE always holds.
- Hatchondo et al. (2010) compare various VFI algorithms to solve the short-term debt problem, but assess their accuracy using Euler residuals.
- Our characterization suggests using a numerical approach based on the GEE and auxiliary equations.

Outline

1 Environment

- 2 Short-Term debt
- 3 Long-Term Debt

4 Conclusion

Conclusion

- We characterize the equilibrium of unilateral default problem without commitment.
- We use the GEE both to gain insight into the nature of the equilibrium and as a basis for computations.
- If marginal revenue is well-defined, the GEE describes the optimal borrowing policy.
- The GEE fails to capture tradeoffs at choices where the price is not differentiable, but we can still describe the optimal policy.

Thanks for your attention!

References

AGUIAR, M. AND M. AMADOR (2020): "Self-Fulfilling Debt Dilution: Maturity and Multiplicity in Debt Models," American Economic Review, 110, 2783-2818. AGUIAR, M., M. AMADOR, H. HOPENHAYN, AND J. WEINING (2019): "Take the Short Route: Equilibrium Default and Debt Maturity," Econometrica, 87, 423-462. ARELLAND, C., L. MALLAR, S. MALLAR, AND V. TSYRENNIKOV (2016): "Envelope Condition Method with an Application to Default Risk Models." Journal of Economic Dynamics and Control. 69, 436-459. ARELLAND, C., X. MATEOS-PLANAS, AND V. RIOS-RULL (2019): "Partial Default." NBER Working Paper. ARELLAND, C. AND A. RAMANARAYANAN (2012): "Default and the Maturity Structure in Sovereign Bonds," Journal of Political Economy, 120, 187-232. AUCLERT, A. AND M. ROGNLIE (2016): "Unique equilibrium in the Eaton-Gersovitz model of sovereign debt," Journal of Monetary Economics, 84, 134-146. CHATTERJEE, S. AND B. EYIGUNGOR (2012): "Maturity, Indebtedness, and Default Risk," American Economic Review, 102, 2674-2699. CLAUSEN, A. AND C. STRUB (2020): "Reverse Calculus and Nested Optimization," Journal of Economic Theory, 187. EATON, J. AND M. GERSOVITZ (1981): "Debt with Potential Repudiation: Theoretical and Empirical Analysis," Review of Economic Studies, 48, 289-309. HATCHONDO, J. C., L. MARTINEZ, AND H. SAPRIZA (2010): "Quantitative Properties of Sovereign Default Models: Solution Methods Matter," Review of Economic dynamics, 13, 919-933 KLEIN, P., P. KRUSELL, AND J.-V. RÍOS-RULL (2008): "Time-Consistent Public Policy," Review of Economic Studies, 75, 789-808. KRUSELL, P., B. KURUSCU, AND A. A. SMITH (2002): "Equilibrium Welfare and Government Policy with Quasi-geometric Discounting," Journal of Economic Theory, 105, 42-72. ------ (2010): "Temptation and Taxation," Econometrica, 78, 2063-2084. KRUSELL, P. AND A. A. SMITH (2003): "Consumption-Savings Decisions with Quasi-Geometric Discounting," Econometrica, 71, 365-375. NIEPELT, D. (2014): "Debt Maturity Without Commitment," Journal of Monetary Economics, 68, 37-54.

We can take a closer look at the derivative of the default threshold

$$d_b(b') = rac{u_cig(c(d(b'),b')ig)[1+(1-\lambda)q(b'')]}{u_cig(c(d(b'),b')ig)-u_cig(d(b')ig)} > 1$$

- Numerator is marginal utility loss from additional debt after repayment.
- Denominator cost, in terms of marginal utility, to maintain access to financial markets.