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Motivation

Models of debt with default – household, firm and sovereign debt –

are workhorses in the quantitative literature.

These models are often solved numerically without characterizing the

equilibrium, its existence and uniqueness.

Precise characterization of trade-offs the borrower faces necessary to

provide clear intuition and computation of these models.



What We Do

1 We revisit the case with short-term debt and no commitment.

2 Characterization through a Generalized Euler Equation (GEE):

– Euler Equation with derivatives of future actions.

– No expression for price derivatives is needed.

3 We then characterize the equilibrium with long-term debt:

– Markov optimality conditions, existence and uniqueness.

– Differentiability of price and policy functions.



What We Find

For long-term debt:

The GEE enables a complete characterization of interior solutions.

Equilibrium features two main regions:

– Both dilution and default risks.

– Only dilution risk.

Equilibrium features two types of behavior:

– Borrower chooses to never exceeds the risky debt limit.

– Borrower enters the risky borrowing region with positive probability.

Limit of finite horizon equilibrium exists and is unique.



Literature

Incomplete markets models with default:

– Auclert and Rognlie (2016), Aguiar et al. (2019), Clausen and Strub (2020),

Chatterjee and Eyigungor (2012) and Aguiar and Amador (2020).

⇒ Long-term debt + GEE + Markov equilibrium.

Generalized Euler equation:

– Krusell et al. (2002, 2010), Krusell and Smith (2003), Klein et al. (2008), Arellano

and Ramanarayanan (2012), Niepelt (2014) and Arellano et al. (2019).

⇒ Differentiability of price and policy functions.

Quantitative solution methods:

– Hatchondo et al. (2010) and Arellano et al. (2016).

⇒ Algorithm based on GEE and auxiliary functions.
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Environment

Risk averse borrower: standard u(c) and β < 1
1+r ≡ p̄.

Endowment y ∈ [y , ȳ ] is iid with continuous cdf F and density f .

Borrowing of non-contingent debt in competitive lending market.

Borrowing b > 0, debt pays coupon 1, fraction λ of the debt matures.

Timing: (1) y realizes, (2) repay or not, (3) new bond issue or autarky.

Upon default, borrower suffers permanent financial autarky:

V A(y) = u(y) +
β

1− β
E [u(c)] = u(y) + βv̄ .
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Short-Term Debt

Discrete choice:

V (y , b) = max

{ repayment︷ ︸︸ ︷
V R(y , b),

default︷ ︸︸ ︷
V A(y)

}
.

Value of repayment:

V R(y , b) = max
b′

{
u
(
y − b + q(b′)b′

)
+ β

∫ ȳ

y
V (y ′, b′)dF

}

= max
b′

{
u
(
y − b + q(b′)b′

)
+ β

∫ ȳ

d(b′)

{
V R(y ′, b′)− V A(y ′)

}
dF︸ ︷︷ ︸

value of access to credit markets

+βv̄

}
.

Default threshold:

d(b) = min
{
{y : V R(y , b) ≥ V A(y)} ∪ {ȳ}

}
.

Risk-free borrowing threshold: b∗ ≥ 0 such that V R(y , b∗) = V A(y).



Short-Term Debt: GEE

uc(c) [q(b
′) + qb(b

′)b′]︸ ︷︷ ︸
marginal revenue

= β

∫ ȳ

d(b′)
uc(c

′)dF

Is this price differentiable? Almost, but not quite.



Default Threshold

For debt b > b∗ there is default risk.

d(b) not differentiable at b∗. ∂+d(b) > 0, but ∂−d(b) = 0.

No analytical solution for b∗, but we know it solves V R(y , b∗) = V A(y).



Short-Term Debt: Bond Price

Bond price:

q(b′) =


p̄[1− F (d(b′))], b∗ < b′

p̄, b′ ≤ b∗

Derivative is defined for b′ ̸= b∗ (inherited property of d(b)):

qb(b
′) = −p̄f (d(b′))db(b

′).

Marginal revenue of borrowing at b′:

q(b′) + qb(b
′)b′ = p̄[1− F (d(b))]− p̄f (d(b′))db(b

′)b′.



Short-Term Debt: Bond Price

The kink in the price at the risk-free borrowing limit b∗ makes b∗ more attractive.

Agents will choose to stay at b∗ to avoid lowering the price of their debt.



Short-Term Debt: GEE

From Clausen and Strub (2020) we know either:

1 b′ = b∗

2 b′ > b∗ and solves the GEE:

uc(c)[
(
1− F (d(b′))

)
− f (d(b′))db(b

′)b′] = βR

∫ ȳ

d(b′)

uc(c
′)dF .

3 b′ < b∗ and solves EE:

uc(c) = βR

∫
uc(c

′)dF

No need to consider the price explicitly.



Short-Term Debt: Borrowing Policy

Agents stay at the risk-free limit b∗ to avoid lowering price of debt
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Long-Term Debt: What’s Different? Dilution

Consumption with long maturity bonds:

c = y − b + q(b′)[b′ − (1− λ)b].

Sovereign’s choice of borrowing determines the value of outstanding

debt b[q(b′)(1− λ)b − 1]

Since debts can be diluted by sovereign, price today depends on future

actions. Sovereign cannot commit not to borrow more in the future.

This is a harder problem to characterize without the price.



Long-Term Debt: Borrower’s Problem

The value of repayment:

V R(y , b) = max
b′

{
u
(
y − b + q(b′)

[
b′ − (1− λ)b

] )
+ β

∫ ȳ

y

V (y ′, b′)dF

}
.

Bond policy function: b′ = h(y , b).

What would a GEE look like (when it holds)?

uc(c)
[
q(b′) + qb(b

′)[b′ − (1− λ)b]
]
= β

∫ ȳ

d(b′)
uc(c

′)
[
1 + (1− λ)q(b′′)

]
dF .

Depends on price derivative qb(b
′) as in the case of short-term debt.



Long-Term Debt: Bond Price

Bond price:

q(b′) = p̄

∫ ȳ

y
I{V R(y ′,b′)≥V A(y ′)}

[
1 + (1− λ)q(h(y ′, b′))

]
dF

= p̄
[
1− F (d(b′))

]
+ p̄(1− λ)

∫ ȳ

d(b′)
q
(
h(y ′, b′)

)
dF

Price depends on both default d(b′) and future borrowing h(b′, y ′).

Changes in price due to d(b′) reflect default risk, those due to

h(y ′, b′) reflect dilution risk.



Long-Term Debt: Bond Price

Bond Price

q(b′) =



p̄[1− F (d(b′))] + p̄(1− λ)
∫ ȳ

d(b′) q(h(y
′, b′))dF , b∗ < b′

p̄ + p̄(1− λ)
∫ ȳ

y
q(h(y ′, b′))dF , 0 < b′ ≤ b∗

1
r+λ

, b′ ≤ 0

With short-term debt (λ = 1), q(b′) = p̄ when b′ < b∗.

With λ < 1, debt is honored next period with certainty, but dilution risk.

Why? If there is probability of b′ > b∗ at some point (after a sequence of bad

shocks), the price today reflects this risk.



Long-Term Debt: Bond Price

With long-term debt there is a discount for dilution risk at b′ = 0.



Long-Term Debt: Bond Price

Derivative for b′ /∈ {0, b∗}

qb(b
′) = p̄(1− λ)

∫ ȳ

d(b′)
qb(h(·))hb(·)dF︸ ︷︷ ︸
Dilution, b′>0

−p̄

Default, b′>b∗︷ ︸︸ ︷
Value of loss︷ ︸︸ ︷[

1 + (1− λ)q(h(d(b′), b′))
] Marginal P(default)︷ ︸︸ ︷
f (d(b′))db(b

′)

Leads to three cases for our GEE:

1 Borrowing b′ > b∗ has both default and dilution terms

2 Borrowing 0 < b′ < b∗ has dilution risk only

3 Saving b < 0 has neither



Long-Term Debt: Bond Price

Is this dilution term well-defined?∫ ȳ

d(b′)
qb(h(·))hb(·)dF

Yes, there are three types of points y ∈ [d(b′), ȳ ].

1 Points s.t. b′ /∈ {0, b∗}, and hb, qb(h) are defined.

2 Points s.t. b′ ∈ {0, b∗}, and hb = 0, ⇒ qb(h)hb = 0.

3 The remaining points where b′ ∈ {0, b∗}, and hb, hence the integrand

qb(h)hb, is not well-defined but has measure zero.



Long-Term Debt: Eliminating qb(b
′)

Use value of qb implied by GEE, call it B(h, d , q):

qb = B(h, d ′, q) =

∫
d′ uc [1 + (1− λ)q′]dF − uc(c)q

uc [h − (1− λ)b]

Substitute this into the expression for the bond price derivative:

qb = p̄(1− λ)

∫ ȳ

d(b′)
B(h′, d ′′, q′)hbdF − p̄ [1 + (1− λ)q̃] f (d)db

Substitute back into GEE:

uc (c)

[
q(b′)+

qb(b
′)︷ ︸︸ ︷{

p̄(1− λ)

∫ ȳ

d(b′)
B(h′, d ′′, q′)hbdF − p̄ [1 + (1− λ)q̃] f (d)db

}
[b′ − (1− λ)b]

]
= β

∫ ȳ

d(b′)
uc (c

′)
[
1 + (1− λ)q(b′′)

]
dF

Default Threshold



Long-Term Debt: GEE Effects

uc(c)

[ consumption gain from marginal borrowing︷ ︸︸ ︷
q(b′) +{

p̄(1− λ)

∫ ȳ

d(b′)
B(h′, d ′′, q′)hbdF

}
︸ ︷︷ ︸

dilution, b′>0

[b′ − (1− λ)b]

−
{
p̄ [1 + (1− λ)q̃] f (d)db

}
︸ ︷︷ ︸

default, b′>b∗

[b′ − (1− λ)b]

]

= β

∫ ȳ

d(b′)
uc(c

′)
[
1 + (1− λ)q(b′′)

]
dF

Two borrowing regions that reflect different risks to creditors:

1 b′ > b∗, the GEE reflects both default and dilution risk (GEE1)

2 0 < b
′
< b∗, the GEE reflects only dilution risk (GEE2)



Borrowing Policy: When Dilution is Positive

Agents wait to borrow, due to dilution lowering the price of borrowing.

As with short-term debt, agents stay at risky borrowing limit b∗.

There is a discontinuity at b∗, due to the kink in the pricing.



Borrowing Policy: When Dilution is Zero

Agents do not stay at b∗ when no net borrowing.

Discontinuities are smaller: less is borrowed because the price is higher.



Borrowing Policy: When Dilution is Negative

There is a jump direct to higher debt without going through b∗.

As with short-term debt, agents stay at b∗ if dilution effect is large enough.



Long-Term Debt: Existence and Uniqueness

Operator K(q) on price:

(
Kq

)
(b′) = p̄

[
1− F (d(b′; q))

]
+ p̄(1− λ)

∫ ȳ

d(b′;q)
q
(
h(y ′, b′; q)

)
dF .

Note that d(·; q) and h(·; q) being implicit functions of q.

Chatterjee and Eyigungor (2012) show existence of a fixed point q∗

that is decreasing in b′.

Aguiar and Amador (2020) show potential multiplicity in q∗.



Long-Term Debt: Existence and Uniqueness

We impose a restriction on q(b′) that it be the limit of a finite horizon

model as T → ∞.

Specifically, we consider the price in the first period of a finite horizon

model q1(b
′;T ) as T becomes large.

We use backwards induction starting at qT (b
′;T ) = 0 to get

qT−1(b
′;T ), . . . , until q1(b

′;T ).

We show the limit exists and is unique.

Aguiar and Amador (2020) may not restrict to Markov equilibria.



Long-Term Debt: Differentiability

Prices and debt functions exhibit jumps in various places.

Those jumps usually prevent differentiability.

We add extreme value shocks and consider only b ≥ 0.

Price and policy function are differentiable almost everywhere.

For arbitrarily small scale parameter, derivation of the GEE is possible.



Long-Term Debt: Summary

We can describe equilibrium as set of functional equations in h and d

1 Auxiliary Functions

q(h(y , b)) = p̄

{
[1− F (d)] + (1− λ)

∫
d
q(h(h))dF

}
B(y , b; h, d , q) =

∫
d′ uc [1 + (1− λ)q′]dF − ucq

uc [h − (1− λ)b]

V R(y , b) = u(y − bq[h − (1− λ)b) +

∫
d
V R − V AdF + βv̄

2 Equilibrium functional equations

uc (c)

[
q(b′)+

{
p̄(1− λ)

∫ ȳ

d(b′)
B(h′, d ′′, q′)hbdF − p̄ [1 + (1− λ)q̃] f (d)db

}
[b′ − (1− λ)b]

]
= β

∫ ȳ

d(b′)
uc (c

′)
[
1 + (1− λ)q(b′′)

]
dF

V R(d , y) = V A(d), V R(y , b∗) = V A(y)



Computation

The most common way to solve these models is value function

iteration on a discrete grid. Very slow. Need to iterate between

V (y , b; q) and q.

Arellano et al. (2016) use Euler equation to solve short-term debt

problem numerically, but assume the GEE always holds.

Hatchondo et al. (2010) compare various VFI algorithms to solve the

short-term debt problem, but assess their accuracy using Euler

residuals.

Our characterization suggests using a numerical approach based on

the GEE and auxiliary equations.
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Conclusion

We characterize the equilibrium of unilateral default problem without

commitment.

We use the GEE both to gain insight into the nature of the

equilibrium and as a basis for computations.

If marginal revenue is well-defined, the GEE describes the optimal

borrowing policy.

The GEE fails to capture tradeoffs at choices where the price is not

differentiable, but we can still describe the optimal policy.



Thanks for your attention!

A
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Long-Term Debt: Default Threshold

We can take a closer look at the derivative of the default threshold

db(b
′) =

uc
(
c(d(b′), b′)

)
[1 + (1− λ)q(b′′)]

uc
(
c(d(b′), b′))− uc

(
d(b′)

) > 1

Numerator is marginal utility loss from additional debt after

repayment.

Denominator cost, in terms of marginal utility, to maintain access to

financial markets.
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